MoWS2 Nanosheet Composite with MXene as Lithium-Sulfur Battery Cathode Material

نویسندگان

چکیده

Due to their superior theoretical specific capacity and energy density, lithium-sulfur (L‒S) batteries are gaining popularity in order achieve the growing terms for more power generation. However, drawbacks such as low electrical conductivity of active ingredient sulfur, severe volume expansion shuttle effect polysulfides, rapidly decaying battery capacity, short life have hampered development. A MoWS2@MXene@CNT composite material is used main cathode L-S this study. MoWS2 can improve electrochemical reaction rate by accelerating polysulfide conversion, whereas MXene suppress electrode expansion. Furthermore, addition carbon nanotubes (CNT) with high improves reaction. Therefore, composites good versatility materials enhance behavior batteries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. Th...

متن کامل

Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery

A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m(2)g(-1) by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, ...

متن کامل

Sulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery

The intrinsic low conductivity of sulfur which leads to a low performance at a high current rate is one of the most limiting factors for the commercialization of lithium-sulfur battery. Here, we present an easy and convenient method to synthesize a mono-dispersed hollow carbon sphere with a thin graphitic wall which can be utilized as a support with a good electrical conductivity for the prepar...

متن کامل

Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermedi...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Materials Science and Engineering

سال: 2023

ISSN: ['1687-8434', '1687-8442']

DOI: https://doi.org/10.1155/2023/6211780